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Two- and Three-Spin Triangular Ising Model: 
Variational Approximations 
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The implications of the known hard-hexagon lattice gas results for the triangular 
Ising model with both pair and triplet interactions are pointed out. Employing 
an appropriate generalization of the variational method of Baxter we determine, 
using the lowest-order approximation, the phase boundaries for this model when 
the pair interactions are ferromagnetic. Higher approximations are presented for 
the case of pure triplet interactions and the resulting phase diagrams are in 
excellent agreement with all exactly known results. 
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1. INTRODUCTION 

The study of two-dimensional Ising spin models has been one of the most 
successful attempts to understand the nature of phase transitions. Given a 
model Hamiltonian, for some lattice spin system, one would like to be able 
to answer some interesting questions. Such questions concern the existence 
and extent of phase transitions between different phases of the system, the 
number and the order of phase transitions for a given "external field," the 
behavior of the magnetization along the phase boundaries. In this paper we 
shall try to answer some of these questions for the triangular lattice model 
specified by the Hamiltonian 
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Here oi, aj, o k have values + 1 and - 1 ;  each triplet (i, j ,  k) surrounds an 
elementary triangle; h(a, b, c) is the contribution to the Hamiltonian of an 
elementary triangle; and the summation is over all 2N triangles (N being 
the number of sites of the triangular lattice). The partition function is 

) l.,--Z ~ = s I-I W(Oi'Oj,Ok) (2) 
{o} (i,j,k) 

where w(a, b, c) = e x p [ - ( 1 / K ~  T)h(a, b, c)] is the Boltzmann weight of any 
interacting triplet (a, b, c) and the summation is over all 2 N spin configura- 
tions of the Ising system. We will have to deal with the partition function 
per site, in the thermodynamic limit, 

k = lira Z y  N (3) 
N--+~ 

The model described by the Hamiltonian (1) is particularly interesting 
as an example of spin systems without the usual up-down spin reversal 
symmetry. {l-s~ [(1) is invariant under the transformation H-+  - H ,  J3 ~ - 
J3 and g + -  oi, therefore, without loss of generality, we will consider 
J3 < 0.] This model incorporates two exactly solvable cases; the Onsager 
solution (J3 = H = 0) and the Baxter-Wu solution (J2 = H = 0). Further- 
more, the hard-hexagons problem, recently solved by Baxter, {6) is obtained 
from (1) as a "limit" case. The usual way to obtain this equivalence is to 
consider J3 =0 ,  ./2 < 0 and let - J 2 / K s T  and H / K B T  both tend to 
infinity, keeping 

z = exp [ ( -  12J 2 - 2 H ) / K s T  ] (4) 

fixed, then the antiferromagnetic triangular Ising model becomes the hard- 
hexagons lattice gas with activity z, and the critical activity z C determines 
the slope of the phase boundary at critical field (H c -- + 6J2). However, 
similar arguments apply when J3 4= 0 and there are several cases where the 
slope of the corresponding phase diagrams are determined by zc. These 
cases together with the ground state properties of model (1) constitute the 
subject of the next section. 

In cases where no exact information is available one has to resort to 
approximations. Approximate treatments have a long and rather successful 
record in the theory of phase transitions. A recent development in this 
direction is the variational method of Baxter3 7) The method has been 
applied to some models (8-12) and yielded very accurate results. The main 
idea of the method is to derive a set of matrix equations from which k may 
be determined. If the matrices involved have infinite size the equations are 
exact (corner transfer matrix equations); by restricting the matrices to be 
finite, a sequence of approximations converging to the exact results is 
obtained. For "ferromagnetic" triangular models the matrix equations were 
given by Baxter and Tsang. ~1~) However, in order to study the critical 
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properties of the general Hamiltonian (1) one has to distinguish between 
the three sublattices of the triangular lattice. The necessity for distinction 
between the sublattices can be seen from the ground state properties; for 
certain values of H, ,/2, and J3 the system admits a ground state in which 
spins on one sublattice are down ( -  1), whereas spins on the other two are 
up (+  1). Such models for which the lattice symmetry may be broken at low 
temperatures and one of the three sublattices "preferentially occupied" may 
be referred as "antiferromagnetic" (the model may be "antiferromagnetic" 
even with ferromagnetic pair interactions J2 > 0). The appropriate general- 
ization of the variational method for "antiferromagnetic" triangular models 
has been obtained in a previous paper (13) (hereafter referred to as I) and 
will be stated in Section 3. The variational method is utilized in Section 4, 
where we restrict ourselves to -/2 > 0 and obtain phase diagrams for several 
values of r = IJ31/IJ21. Higher approximations are presented for the case of 
pure triplet interactions (J2 = 0). 

2. EXACT PROPERTIES 

In order to examine the ground state configurations it is convenient to 
define 

r = [J3l/IJ21 (5) 

H* = n / ( l J 3 1  + IJ2[) (6a) 
and 

h*(a,  b, c) = h(a ,  b, e)/(lJ3[ -4- [J21) (6b) 

From the definition of the Hamiltonian (1) it is seen that there are four 
configurations on an elementary triangle with different energies, i.e., 

h~' = h*(+ ,  +,  + )  = - � 8 9  (7a) 

= h * ( + ,  +, - )  = h * ( + ,  - ,  +) = h * ( - ,  +, +) 

= - ~H* + ( - r  + � 8 9  + 1) (7b) 

h ~ = h * ( + ,  [ , -  ) = h * ( ] , + '  l ) = h * ( - , - ,  + ) 

-  I4. + ( r  + + 1) (7c) 

h~=h*( , , )=�89 + ( - r - ~ a ) / ( r +  l) (7d) 

Here a = + 1 for ferromagnetic pair interactions (J2 > 0) and a = - 1 for 
antiferromagnetic pair interactions (./2 < 0). For a = + 1, a little calculation 
(i.e., find the rain(h*}) shows that one has to distinguish three cases: 

Case FI: r > 3/2.  The ground states ( T =  0) are (i) the (+  + +)  
state (all spins up) for H * >  ( 6 r - 6 ) / ( r  + 1); (ii) the three ordered 
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(+ + - )  states (spins on one sublattice down, spins on the other two up) 
when (6r - 6 ) / ( r  + 1) > H* > 3 / ( r  + 1); and (iii) the ( -  - - )  state (all 
spins down) when H* < 3 / ( r  + 1). Thus the ground state undergoes two 
transitions, one at H* = (6r - 6 ) / ( r  + 1) and the (+  + - ) 4 ( -  - - )  tran- 
sition at H* = 3 / ( r  + 1). In the former, precisely at H* = (6r - 6 ) / ( r  + 1), 
there is an infinite degeneracy of states, so we shall use the notation 

(+  + + ) I 2 ( +  + - )  for this transition. This infinite degeneracy has some 
important implications and it will be shown that these states are in 
one-to-one correspondence with those of the hard-hexagon model. 

Case F2: r < 3 /2 .  The ground state undergoes only the (+  + + )  
-~ ( -  - - )  transition at H* = 2r / ( r  + 1). 

Case F3: r = 3 /2 .  Here again we have only one transition at H* 
= 6/5.  When H* ~ 6 /5  we have only the (+  + + )  ground state, whereas 
when H * <  6 /5  we have only the ( - - - )  ground state. Precisely at 
H* = 6/5,  however, there is an infinite degeneracy of states, and to make 

this explicit we shall use the notation (+  + + ) I 2  ( -  - - )  for this transi- 
tion. The states are not in one-to-one correspondence with the configura- 
tions of the hard-hexagon model, but the infinite degeneracy distinguishes 
the present transition from the (+  + + ) 4 ( - - - )  transition, and has 
again, as we shall see, some interesting implications. 

Using a similar notation we find for antiferromagnetic pair interac- 
tions (a = - 1), the following cases: 

Case AI: r ~  1/2. We have two ground state transitions; the 

( + + + ) I2" ( + + - ) at H* = 6 and the ( + + - ) ~ ( -  - - ) transition at 
t t *  = - 3 / ( r  + 1). 

Case A2: r < 1/2. There are now three transitions. The (+  + + )  
, o  ) ' 2  (+  + - )  transition at H* = 6; the (+  + -  ( - - + )  transition at 

H* = - 6 r / ( r  + 1); and the ( -  - + ) I2"  ( -  - - )  transition at H* = (6r - 
6 ) / ( r  + 1). 

Case A3: r = I /2 .  We have again (+  + + ) 1 2  (+  + - )  transition at 

H* = 6 and the (+  + - ) I 2 " ( -  - - )  transition at a field H* = - 2 .  
These ground state properties are helpful in understanding the topol- 

ogy of the phase boundaries (since they determine some of their "end 
points"). Some of the above transitions are expected to extend to finite 
temperatures (in finite temperatures we drop the notation I.D. and replace 
the term "state" by the term "phase"). However, the mean-field approxima- 
tion (5) predicts that in case F3 (r = 3 /2)  and also in case F2 (for some r) 
both the (+  + + ) ~  (+  + - )  and the (+  + - ) ~  ( -  - - )  transitions occur 
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at finite temperatures, but our results (Section 4) do not confirm this. Other 
questions concern the order of these transitions and the slopes of the phase 
boundaries at their "end points." Some of these questions can be definitely 
answered. In particular, the (+  + +)---> (+  + - )  transitions in cases F I, 
A 1, A 2, A 3 and the ( -  - + ) ---> ( - - - ) transition in case A 2 are of second 
order and the slope of their phase boundaries at the corresponding critical 
fields is determined by the critical activity of the hard-hexagon model. To 
prove this statement let us define 

T* = K T/(IJ21 + IJ l) (8a) 

%* = %/(IJ21 + 1131) (8b) 

and transform to lattice gas variables (E i = 0, 1) by 

o i = s ( 1  - 2 , i )  ( s  = _ 1) (9 )  

Then from (1) and (9) we find 

2 [(2ras - -  1)(eiEj + " i ' k  -4- Ejek) - -  4 r a s e i e j , k ]  %*= ~ a(r  + l) ( i , j , k )  

[6(ras-1)~(r4_ 1) ] N ( s H * + ~ ) s  (10) - 2~i sH* 3 a -  2rs 

where the first summation is over all 2N triangles; the second summation is 
over all N sites; and as before a = + 1 for ferromagnetic pair interactions 
and a = - 1  for antiferromagnetic. In order to obtain the hard-hexagon 
lattice gas one must introduce infinite nearest-neighbor repulsions. From 
(2) and (10) we find that this can be achieved by taking the zero- 
temperature limit as follows: 

sH* (1 la) 
T---g- -)  

(rsa- 1) 
~ ( l lb )  a(r + 1)T* 

(2ras- 1) 
~ ( l lc )  a(r + 1)T* 

(2ras - 3) 
~oo ( l id )  a(r + 1) T* 

and keeping 

z - - e x p  2 a(r + T)T* T* 

fixed. One can verify that the above are satisfied precisely under the 

conditions that the ( + + + ) ~ ' ( + + - )  ( s =  +1)  and the ( - - + )  
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I.D. 
-~ ( -  - - )  (s = - 1) transitions occur; and that proves the statement that 

the corresponding infinite degenerate states are in one-to-one correspon- 
dence with the configurations of the hard-hexagon model. The critical 
fields for these transitions (a = s = 1, s = - a = 1 and s = a = - 1, respec- 
tively) can be written 

6(ras- 1) 
H* - as(r + 1) (13) 

Now, since, as T* ~ 0 and H * ~  H * -  (�89 ln z)T*, the partition function 
(2) transforms to the partition function of the hard-hexagon model with 
activity z, it follows that the slope of the phase boundaries H*(T*) at T = 0 

dH*(T*) [ 

~" - d T *  T* = 0  

is related to the critical activity of the hard-hexagon model (6) by 

S lnzc= - S ln[ l (l l  + 5f5)J - 

(14) 

(15) 

Furthermore, the critical magnetization is related to the critical density of 
hard hexagons by ~6) 

[Mcl = 1 - 2& = 0 . 4 4 7 . . .  (16) 

Precisely at r = 3 (r = 1)2 in case F3 (A3), the limits ( l ld )  [(llc)] cannot be 
satisfied and the one-to-one correspondence with the hard-hexagons config- 
urations does not hold. However, the implications of the infinite degener- 
acy of states will be discussed in Section 4, where we present the results of 
the variational method. 

3. VARIATIONAL APPROXIMATIONS 

The matrix equations for "antiferromagnetic" triangular models are 
given in Eqs. (6) and (7) of I. Using a representation in which the corner 
transfer matrices B(a) and .~(a) are diagonal we can write these equations 
a s  

F(a, b).,~(b)r(b, a) = ~1-42(a) 
b 

6T(b,a)d(b,a) =  2Ba(a) 
b 

N G(a, blB 2(b) 6 r (a ,  b) = ~3-43(a) 
b 

~w(a,b,c)F(a,e)6(e,b) = ~l~/26(a,b)B(b) 
s 

(17a) 

(17b) 

(17c) 

(17d) 
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~w(a ,b , c )6 (a , c )B(c )6V(b , c )  = ~l~/2A(a)F(a,b)A(b) (17e) 
C 

r(a ,b)  = r r (b ,a )  (lYf) 

Here a, b, and c have values + 1; and w(a,b,c) is the Boltzmann weight of 
the interacting spins a, b, and c surrounding an elementary triangle. The 
partition function per site is 

k = (18)  

Furthermore, the magnetizations can be expressed in terms of the corner 
transfer matrices (they have been obtained from a variational expression 
for k in I): 

M =  Zm + �89 ' (19a) 

2aaTr[X3(a)]  
m= 2o Tr[X3(a) ] (19b) 

m'= Y~aaTr[B6(a)] 
2 a  Tr[ B6(a)] (19c) 

Here m' is the magnetization for the sublattice distinguished from the other 
two. 

In cases where the lattice symmetry is not broken the infinite- 
dimensional solution of Eqs. (17) is expected to have the properties 

A(a) = B2Ca) = A2(a) (20a) 

G(a, b) = A (a)F(a, b) (20b) 

++t = 42 = ~3 = 4 ,  ~ = +73 = ~ (20c) 
and our equations reduce to those given by Baxter and Tsang(~J): 

F(a, b)A 2(b)F(b, a) = ~A 4Ca) (21a) 
b 

~]w(a,b,e)F(a,c)A(c)g(c,b)  = ~l'/2A(a)F(a,b)A(b) (21b) 
C 

rCa, b) = rr (b ,  a) (21c) 

= ~/~ (21d) 

2aaTrIA6Ca)] 
M = m = m ' =  (21e) 

2~Tr[A6(a) ]  

In the following section we utilize these equations to study the phase 
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diagrams for the model (1) with ferromagnetic pair interactions (J2 > 0) for 
several values of r ( = I J31//[J2[). The n 1 • n2 approximation truncates A ( + ), 
B(+) ,  F ( + , + ) ,  and G ( + , + )  to be n 1 •  F ( + , - )  and G ( + , - )  
[ F ( - ,  + )  and G ( - ,  +)] to be n 1 X n2(n 2 • n0; and A ( - )  and B ( - )  to be 
n 2 • n 2 matrices. The resulting nonlinear algebraic equations are solved by 
the Newton-Raphson method. Initial guesses are obtained using the 
"eigenvalue iterative procedure" of Baxter (7) as generalized in I. 

4. PHASE DIAGRAMS 

We consider first the 1 • 1 approximation (all matrices 1 • 1) and 
derive phase diagrams for several values of r. These phase diagrams (Figs. 
l a - l e )  are obtained as follows. In the general case, r > 3/2, we find three 
physically interesting solutions [the solution of Eqs. (17) is not unique and 
one has to select the solution that maximizes k]. Using a notation reflecting 
the low-temperature properties of these solutions we shall refer to them as 
the (+  + +), ( - - - ) ,  and (+  + - )  solutions. The (+  + +)  and the 
( -  - - )  solutions satisfy the symmetry properties (20); the (+  + - )  solu- 
tion does not. Let the partition function per site k, corresponding to these 
solutions, be denoted by k ( +  + +), k ( - - - ) ,  and k ( +  + - ) ,  respec- 
tively. The phase boundaries are determined by comparing these partition 
functions in the (H*, T*) plane. The critical lines (PIP3), (P2P3), and 
(P3P4) are determined by the conditions k ( +  + + )  = k ( +  + - ) ,  k ( +  + - )  
= k ( -  - - ) ,  and k ( +  + + )  = k ( -  - - ) ,  respectively. For r > 3 /2  the 
three solutions satisfy at P3 : k ( +  + -t-) = k(q- -t- - )  = k ( -  - - ) .  The solu- 
tion that maximizes k in each region is indicated in Fig. lb. 

In Figs. l a - l e  the mean-field approximation (5) is also shown by 
dotted lines. The 1 • 1 approximation yields the exact "end points" given 
by the ground state considerations: 

H* = H~, = (6r - 6 ) / ( r  + 1) for r > 3 /2  (22a) 

H ~  = 3 / ( r  + 1) for r > 3 /2  (22b) 

H~3 = 2 r / ( r  + 1) for r < 3 /2  (22c) 

From Figs. l a - le ,  one can see that the quantitative predictions of the 
mean-field approximation are very poor. Qualitatively the mean field has 
some drawbacks not shared with the 1 • 1 approximation. It predicts a 
positive value for the slope 2t and thus two transitions for certain values of 
H* (above H,~), one transition from the (+  + + )  to the (+  + - )  phase and 
another, in some higher temperature, from the (+  + - )  to the (+  + +)  
phase. It also predicts ~5) that the (+  + + ) ~ ( +  + - )  and the (+  + - )  
- - ) ( -  - - )  transitions occur even for some r < 3/2. The 1 • 1 approxi- 
mation rules out these possibilities as it can be seen from Figs. l a - l e .  
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Fig. 1. Phase diagrams of the triangular Ising model (1) with ferromagnetic pair interactions 
for varying strengths of the pair and triplet interactions. Solid lines (this work, 1 x 1 
approximation), dashed lines (Ref. 5, mean-field approximation). Arrows indicate exact 
(zero-field) results. 
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The slope of the line (PIP3) at the critical field, gff i l  , is independent of the 
value of r (as it should be) and is a reasonable approximation (X 1 • l = 

- 1 . 0 2 . . .  ) to the exact result (Tt = - 1 . 2 0 3 . . .  ). 
Regarding the nature of phase transitions the 1 • 1 approximation 

gives, in general, first-order transitions with jumps in magnetization; P4 
being a "classical" critical point within the approximation�9 The jumps are 
small only for the critical line (P1P3). From the magnitude of the jumps one 
could conclude that the (+  + + ) ~ ( -  - - ) and the (+  + - ) ~ ( -  - - )  
transitions are of first order, whereas the (+  + - ) ~ ( +  + + )  transition is 
of second order. As T* ~ 0, the ( -  - - ) ~  (+  + - )  transition takes place 
between magnetizations - 1 and + 1/3; the slope of the phase boundary at 
P2 is independent of r and it is zero (dH*/dT*[r.= o = 0). For r < 3 /2  the 
"ferromagnetic" (+  + + ) ~ ( -  - - ) transition takes place, as T* ~ 0, be- 
tween magnetizations + 1 and - 1; again the slope is independent of r and 
it is zero. However, precisely at r - - 3 / 2  the ferromagnetic ( + +  + )  
~ ( - - - )  transition takes place, as T * ~ 0 ,  between magnetizations 
0 . 6 4 4 7 . . .  and - 1  and the slope of the phase boundary is nonzero: 
dH*/dT*[r* =0 = -0 .2 .  We suppose that this rather surprising result is not 
an artifact of the 1 • 1 approximation�9 It seems reasonable to speculate 
that this different behavior is due to the infinite degeneracy of ground 
states pointed out in Section 2 (case F3). For r > 3 /2  the ferromagnetic 
(+  + + ) ~  ( -  - - )  transition at P3 takes place between a positive and a 
negative magnetization, both varying with r. 

It should be pointed out that the "length" of the line (P3P4) for r = o0 
(J2 = 0) is of the order of the error of the 1 • 1 approximation. It is 
therefore possible that P3 and P4 coincide in the exact solution. Indeed, this 
seems to be the case since in the 2 • 2 approximation (P3P4) becomes 
"shorter" and is again of the order of the error of the 2 • 2 approximation. 
However, for 3 /2  < r < oo the line (PAP4) does not seem to be merely an 
artifact of the approximation (Fig. lb); this can also be seen from Table I, 
where we give the points P3 and P4 for several values of r. It is therefore 
possible that in the exact solution H* 4/> 0 for any r; note that mean field 
yields H~4 < 0 for any r. 

We restrict now the treatment to pure triplet interactions (J2 = 0) and 
present two higher approximations to the critical line (P1P3). These are the 
2 • 2 and 3 • 2 approximations shown in Fig. 2 together with the 1 • 1 
approximation. The numerical results are given in Table II. They converge 
to the exact values, as can be seen by comparing with the exactly solvable 
zero-field case and also with the hard-hexagon result 05).  The 2 • 2 
approximation yields ~ k E x  2 "~" - -  1 . 1 6 . . .  and the 3 • 2 :X3x 2 = - 1.206 
� 9  in good agreement with the exact result (X = - 1 . 2 0 3 . . .  ). The jumps 

in magnetization are, in general, small in magnitude and tend to zero as the 
size of the matrices tends to infinity, so the oo • o0 solution would yield, as 
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Table I. Results of the 1 • 1 Approximation for the "End Points" of the Phase 
Diagrams/'3 and P4 for Several Values of r 

r = I1~1/11=1 r ~  H~ Z;4 a~4 

13 

oo 2.347...  a 0 2.524 
20 2�9 �9 0.135... 2.492 

3 1.528... 0.712... 2.408 
2 0.92. . .  0.966... 2.408 

1.5 0 b 1.2 b 2.435 
1 0 b 1 b 2.524 

0.5 0 b 2/3 b 2.83. 
0.2 0 b 1/3 b 3.312 

0 0 b 0 b 3.915 

Exact result: 2/ln(1/~/2) = 2.269 . . . .  
b Exact results given in Eq. (22c). 
c Exact result: 4/In 3 = 3.640 . . . .  

. . - 0.072... 

. . 0�9 
�9 0�9 
�9 0.481 . . .  
�9 0.532...  
. .  0.555... 

0.454 �9  
�9  0.245... 
�9 , c 0 

expected,  second-order  t ransi t ions  for  (PIP3).  The  j u m p  is m a x i m a l  at  
H*  = 0, but ,  even in this appa ren t ly  least  accura te  case for  the magne t iza -  

tion, the t rend  of the results is correct  [the 1 • 1 results for  H*  = 0 are  
M ( +  + - )  = 0.281 and  M ( +  + + )  = 0]. The  j u m p  is zero at  H * ~  1.5, 
where  it also changes  sign. C o m p a r i n g  the values  of the magne t iza t ions  in 
Tab le  II  one can  see that  M ( +  + - )  is more  accura te  than  M ( +  + + )  
(away  f rom zero field). The  l imit ing values of M ( +  + - )  as we a p p r o a c h  
the cri t ical  f ield ( H * =  6) are  0.44 and  0.43 for  the 2 • 2 a n d  3 • 2 
approx imat ions ,  respectively,  in very good  agreement  with the exact  result  
(16). Appa ren t l y ,  away  f rom zero field, the 2 • 2 a p p r o x i m a t i o n  for  
M (  + + - )  is accura te  to the second dec imal  place�9 

F o r  pure  tr iplet  in teract ions ,  Baxter,  Sykes, and  Wat t s  (4) have  conjec-  
tured  an  expression for  the magne t i za t ion  a long (P2P3), with a cr i t ical  
exponen t  tim = 1/12.  The  magne t iza t ions  of the ( - - - )  and  ( +  + - )  
phases  a long this line are  re la ted  by  M ( -  - - )  = - 3 M ( +  + - )  as we can  
show f rom Eqs. (17). Indeed ,  a t  H*  = 0 we have  w(a, b, e) = w ( -  a, - b, c) 
a n d  if Eqs.~(17) have  a solut ion . ,4,B,F,G they also pe rmi t  a solut ion 
A*, B*, F*,  G*, where  

A*(a) = A ( -  a), B*(a) = B(a) (23a) 

F*(a,b) = F ( - a , - b ) ,  Cr*(a,b) = G ( - a , b )  (23b) 

= k (23c) 

Cons ider ing  A , B , F , G  to descr ibe  the ( - - - )  phase,  the A*,B*,  F*, G* 
solut ion descr ibes  the ( +  + - )  phase.  I t  is r easonab le  to assume that  the 
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Fig. 2. Phase diagrams for the case of pure triplet interactions (J2 = 0). Solid line (3 x 2 
approximation), dotted line (2 • 2 approximation), dashed line (1 x 1 approximation). The 
straight line shows that exact slope at H* = 6. Arrow indicates the exact Baxter-Wu critical 
temperature. 
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Table II. 

H *  T a 

Variational Approximations for the Critical Line (PIP3) in the Case 
of Pure Triplet Interactions 

2 X 2 Approximation 3 x 2 Approximation 
M(+ + - )  M(+ + +)  T '~ M(+ + - )  M(+ + +) 

0 2.284 t 0.251 0 2.278 t 0.260 0.107 
0.5 2.336 0.297 0.268 2.321 0.302 0.278 
1 2.298 0.319 0.307 2.280 0.321 0.312 
1.5 2.223 0.335 0.334 2.203 0.336 0.335 
2 2.120 0.350 0.357 2.099 0.350 0.356 
2.5 1.993 0.365 0.378 1.970 0.363 0.374 
3 1.839 0.379 0.399 1.815 0.375 0.391 
3.5 1.656 0.395 0.420 L631 0.388 0.409 
4 1.438 0.410 0.442 1,412 0.402 0.427 
4.5 1.171 0.426 0.463 1.145 0.415 0,443 
5 0,836 0.444 0.481 0.812 0.425 0.456 
5.5 0,428 0.444 0.487 0.414 0.428 0,460 

Exact result: 2/ln(1 + ~-) = 2.2691 . . . .  

oo • oo solution that maximizes k for the ( -  - - )  phase will satisfy the 
symmetry properties (20) so that m = m' and from (23) and (19) we find 
M ( - - - )  = - 3 M ( +  + - ) .  

5. COMPUTATIONAL REMARKS 

In general each of the solutions [(+ + +), ( - - - ) ,  and (+  + - )  
solutions], used to obtain the phase boundaries in the previous section 
exists in the region where it maximizes k but also a little outside this region. 
A similar situation was found by Baxter, Enting, and Tsang (12) in their 
study of the hard-square lattice gas. It is expected (12) that this interpene- 
tration of the solutions will disappear as the size of the matrices increases. 
It may be speculated that the line (P3P4), !n the case of pure triplet 
interactions, is a consequence of this interpenetration of the "finite" solu- 
tions and will shrink to a single point (P3) as the size of the matrices 
increases. 

The oo • oe solution of the matrix equations defining the variational 
approximations [in our case Eqs. (17)], that maximizes k, is expected, in 
some cases, to satisfy certain symmetry properties [such as (20)]. However, 
it should be pointed out that this need not be true in all finite-order 
approximations not even for the "square" (n I = n2) approximations. A 
striking example is the 2 • 2 approximation for H* = J2 = 0. In this case 
we found two solutions for the ( -  - - )  phase, one symmetric [i.e., satisfy- 
ing (20)] and an asymmetric [not satisfying (20)]; the asymmetric solution 
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maximizes k. The difference between these solutions is small and presum- 
ably will diminish as one goes to higher approximations. From the symmet- 
ric ( -  - - )  solution we then obtained using (23) a "symmetric" (+  + - )  
solution (with m = - m' at H* = 0), which then becomes asymmetric as H* 
increases. It is therefore possible to obtain a 2 x 2 approximation to the 
critical line (P3P1) starting from the "symmetric" (+  + - )  solution; the 
results are then slightly different from those in Table II. For instance, this 
yields T*(H* = 0 )=  2.2828 . . . .  whereas the asymmetric yields T*(H* 
= 0) = 2 .2840 . . .  ; the asymmetric solution gives slightly smaller jumps in 
magnetization. In the 1 x 1 approximation the ( - - - )  solution that 
maximizes k satisfies also the symmetry properties (20). 

6. C O N C L U D I N G  REMARKS 

We have explored the implications of the known hard-hexagon lattice 
gas results for the triangular Ising model with both pair and triplet 
interactions. The model has been studied by the variational method when 
the pair interactions are ferromagnetic and the nature of phase diagrams 
has been clarified. The numerical results of the approximations are in good 
agreement with the known exact results and higher approximations con- 
verge to the exact values as indicated by the 2 x 2 and 3 • 2 approxima- 
tions for the case of pure triplet interactions. The lowest-order 1 • 1 
approximation yields successful qualitative predictions. It predicted that the 
slope of the (+  + + ) ~  (+  + - )  phase boundary at the critical field and 
the critical magnetization are independent of r (the ratio of the interaction 
strengths). It points out that the T* = 0 slope of the phase boundaries for 
the (+  + + ) ~ ( - - - )  (r < 3//2) and the (+  + - ) ~ ( -  - - )  (r > 3//2) 
transitions is also independent of r and it is zero. We conjecture this to be 
an exact result. Finally, for the special ratio r = 3//2 it predicts that the 
(+  + +)  ~ ( -  - - ) transition takes place, as T* ~ 0, between magnetiza- 
tions 0 .6447 . . .  and - 1  and the slope of the phase boundary has a 
nonzero value, i.e., -0 .2.  It is reasonable to assume that the numerical 
values 0.64 and -0 .2  are only approximate; however, we expect the 
qualitative prediction, that the (+  + + ) ~  ( -  - - )  transition at r = 3//2 is 
different (at low temperatures) from the (+  + + ) ~  ( -  - - )  transition for 
r < 3//2, to be correct. 
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